13 research outputs found

    New characterization of dihydroergotamine receptor pharmacology in the context of migraine: utilization of a β-arrestin recruitment assay

    Get PDF
    IntroductionDihydroergotamine mesylate (DHE) is an established effective acute therapy for migraine and is often characterized by its broad receptor pharmacology. Knowledge of DHE pharmacology largely comes from studies employing older methodologies.ObjectiveTo assess DHE receptor activity using high-throughput methods to screen for functional ß-arrestin activity at G protein–coupled receptors (GPCRs).MethodsFunctional receptor activities of DHE and sumatriptan succinate (both 10 μM) were screened against 168 GPCRs using the gpcrMAX assay. Agonist and antagonist effects were considered significant if receptor activity was >30% or inhibited by >50%, respectively. Radiolabeled ligand binding assays were performed for DHE (0.01–300 nM for 5-HT3 and 4E; 0.3–10,000 nM for 5-HT1B, α-adrenergic2B [i.e., α2B-adrenoceptor], D2, and D5) to assess specific binding to select receptors.ResultsDHE (10 μM) exhibited agonist activity at α-adrenergic2B, CXC chemokine receptor 7 (CXCR7), dopamine (D)2/5, and 5-hydroxytryptamine (5-HT)1A/1B/2A/2C/5A receptors and antagonist activity at α-adrenergic1B/2A/2C (i.e., α1B/2A/2C-adrenoceptors), calcitonin receptor–receptor activity modifying protein 2 (CTR-RAMP2) or amylin 2 (AMY2), D1/3/4/5, and 5-HT1F receptors. Sumatriptan succinate (10 μM) exhibited agonist activity at the 5-HT1B/1E/1F/5A receptors. DHE demonstrated a half-maximal inhibitory concentration (IC50) of 149 nM at the 5-HT1F receptor and a half-maximal effective concentration (EC50) of 6 μM at the CXCR7 receptor. DHE did not bind to the 5-HT3 receptor at concentrations up to 300 nM and bound poorly to 5-HT4E and D5 receptors (IC50 of 230 and 370 nM, respectively). DHE bound strongly to the D2, 5-HT1B, and α-adrenergic2B receptors (IC50 of 0.47, 0.58, and 2.8 nM, respectively).ConclusionBy using a high-throughput β-arrestin recruitment assay, this study confirmed the broad receptor profile of DHE and provided an update on DHE receptor pharmacology as it relates to migraine

    The Upper Nasal Space: Option for Systemic Drug Delivery, Mucosal Vaccines and “Nose-to-Brain”

    No full text
    Sino-nasal disease is appropriately treated with topical treatment, where the nasal mucosa acts as a barrier to systemic absorption. Non-invasive nasal delivery of drugs has produced some small molecule products with good bioavailability. With the recent COVID pandemic and the need for nasal mucosal immunity becoming more appreciated, more interest has become focused on the nasal cavity for vaccine delivery. In parallel, it has been recognized that drug delivery to different parts of the nose can have different results and for “nose-to-brain” delivery, deposition on the olfactory epithelium of the upper nasal space is desirable. Here the non-motile cilia and reduced mucociliary clearance lead to longer residence time that permits enhanced absorption, either into the systemic circulation or directly into the CNS. Many of the developments in nasal delivery have been to add bioadhesives and absorption/permeation enhancers, creating more complicated formulations and development pathways, but other projects have shown that the delivery device itself may allow more differential targeting of the upper nasal space without these additions and that could allow faster and more efficient programs to bring a wider range of drugs—and vaccines—to market

    Nasal Delivery of Acute Medications for Migraine: The Upper Versus Lower Nasal Space

    No full text
    The acute treatment of migraine requires effective drugs that are well tolerated and provide rapid and consistent pain relief. Oral tablets are the most commonly used acute treatment for migraine; however, their effectiveness is limited by the rate of gastrointestinal (GI) tract absorption and first-pass hepatic metabolism, and they may not be ideal for patients experiencing GI motility issues. Nasal delivery is an attractive alternative route as it may circumvent GI tract absorption, avoid first-pass metabolism in the liver, and potentially reduce the frequency of GI adverse events. The large surface area and high vascularity within the nose may permit rapid absorption of therapeutics into the systemic circulation, allowing for rapid onset of action. However, the site of drug deposition (upper versus lower nasal cavity) may influence drug pharmacokinetics. Most approved nasal migraine therapies target the lower nasal space where the epithelium is less permeable, and they may be quickly cleared away due to increased ciliary function or dripping from the nose or swallowing, resulting in variable absorption and limited bioavailability. Together with its abundant vascularization, relative mucosal thickness stability, and low clearance rates, the upper nasal space harnesses the benefits of nasal delivery to potentially maximize drug efficacy

    Safety and pharmacokinetics of dihydroergotamine mesylate administered via a novel (Tempo™) inhaler

    No full text
    Objective.— We investigated the pulmonary absorption of dihydroergotamine (DHE) mesylate and compared the safety, pharmacokinetic, and metabolic profile of 4 different doses of orally inhaled DHE delivered by the Tempo™ Inhaler (MAP Pharmaceuticals Inc., Mountain View, CA, USA) with 1.0 mg intravenously (IV) administered DHE in 18 healthy subjects. Methods.— Safety was measured by monitoring adverse events, vital signs, electrocardiograms, spirometry, and changes in biochemical and hematological laboratory values. Liquid chromatography, tandem mass spectrometry was used to determine plasma DHE levels while Cmax, tmax, AUC0-6, AUC0-48, AUC0-inf, and t1/2 of parent DHE and the major bioactive metabolite, 8′OH-DHE. Pharmacokinetic parameters and qualitative spectrograms for DHE and metabolites for all treatment groups were compared after inhaled DHE (MAP0004) and IV DHE 1.0 mg. Geometric means and 90% confidence intervals of log-transformed data were calculated and the ratio of means compared. Results.— Inhaled DHE resulted in rapid systemic absorption with pharmacokinetic parameters of both parent DHE and 8′OH-DHE similar to those achieved after a 3-minute IV infusion. Post-peak (tmax∼12 minutes) DHE concentrations achieved after 4 actuations (∼0.88 mg respirable dose) of MAP0004 were comparable to those detected after IV administration. The systemic exposure to DHE after 6 actuations of MAP0004 was slightly greater than that achieved after IV administration (geometric mean AUC0-inf ratio = 1.24). Conclusion.— The 4-actuation delivery was well tolerated and provided systemic levels of DHE and 8′OH-DHE slightly lower than IV administration and predicted levels

    Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: An open-label, phase 2, dose-escalation study

    No full text
    BACKGROUND: We report clinical safety and biochemical efficacy from a dose-ranging study of intravenously administered AVI-4658 phosphorodiamidate morpholino oligomer (PMO) in patients with Duchenne muscular dystrophy. METHOD: We undertook an open-label, phase 2, dose-escalation study (0·5, 1·0, 2·0, 4·0, 10·0, and 20·0 mg/kg bodyweight) in ambulant patients with Duchenne muscular dystrophy aged 5–15 years with amenable deletions in DMD. Participants had a muscle biopsy before starting treatment and after 12 weekly intravenous infusions of AVI-4658. The primary study objective was to assess safety and tolerability of AVI-4658. The secondary objectives were pharmacokinetic properties and the ability of AVI-4658 to induce exon 51 skipping and dystrophin restoration by RT-PCR, immunohistochemistry, and immunoblotting. The study is registered, number NCT00844597. FINDINGS: 19 patients took part in the study. AVI-4658 was well tolerated with no drug-related serious adverse events. AVI-4658 induced exon 51 skipping in all cohorts and new dystrophin protein expression in a significant dose-dependent (p=0·0203), but variable, manner in boys from cohort 3 (dose 2 mg/kg) onwards. Seven patients responded to treatment, in whom mean dystrophin fluorescence intensity increased from 8·9% (95% CI 7·1–10·6) to 16·4% (10·8–22·0) of normal control after treatment (p=0·0287). The three patients with the greatest responses to treatment had 21%, 15%, and 55% dystrophin-positive fibres after treatment and these findings were confirmed with western blot, which showed an increase after treatment of protein levels from 2% to 18%, from 0·9% to 17%, and from 0% to 7·7% of normal muscle, respectively. The dystrophin-associated proteins α-sarcoglycan and neuronal nitric oxide synthase were also restored at the sarcolemma. Analysis of the inflammatory infiltrate indicated a reduction of cytotoxic T cells in the post-treatment muscle biopsies in the two high-dose cohorts. INTERPRETATION: The safety and biochemical efficacy that we present show the potential of AVI-4658 to become a disease-modifying drug for Duchenne muscular dystrophy. FUNDING: UK Medical Research Council; AVI BioPharma

    Clinical Expert Panel on Monitoring Potential Lung Toxicity of Inhaled Oligonucleotides: Consensus Points and Recommendations

    No full text
    Oligonucleotides (ONs) are an emerging class of drugs being developed for the treatment of a wide variety of diseases including the treatment of respiratory diseases by the inhalation route. As a class, their toxicity on human lungs has not been fully characterized, and predictive toxicity biomarkers have not been identified. To that end, identification of sensitive methods and biomarkers that can detect toxicity in humans before any long term and/or irreversible side effects occur would be helpful. In light of the public's greater interests, the Inhalation Subcommittee of the Oligonucleotide Safety Working Group (OSWG) held expert panel discussions focusing on the potential toxicity of inhaled ONs and assessing the strengths and weaknesses of different monitoring techniques for use during the clinical evaluation of inhaled ON candidates. This white paper summarizes the key discussions and captures the panelists' perspectives and recommendations which, we propose, could be used as a framework to guide both industry and regulatory scientists in future clinical research to characterize and monitor the short and long term lung response to inhaled ONs
    corecore